skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tavana, Hossein"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neonatal respiratory distress syndrome is a potentially life-threatening condition that is often treated with the delivery of exogenous surfactants through a process called surfactant replacement therapy. This therapy includes the administration of the liquid surfactant through an endotracheal tube and mechanical ventilation. Due to the difficulty of imaging neonate lungs during this therapy, the success of surfactant delivery is often determined by observational techniques and evaluation of blood oxygen levels. The limitation of imaging creates challenges in evaluating the distribution of surfactant in airways. To address this limitation, we designed a computational, eight-generation, asymmetric neonate lung model using morphometric data to mimic the geometric structure of the human airway tree and fabricated it using an additive manufacturing technique. We used our model to study two-aliquot delivery of a clinically rated liquid surfactant under two different orientations to evaluate its distribution in airways. Our study offers a complex lung airway tree design that mimics the native geometry of the human airway tree to enable studies of therapeutics transport in airways. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract Colorectal cancer, a significant cause of cancer-related mortality, often exhibits drug resistance, highlighting the need for improved tumor models to advance personalized drug testing and precision therapy. We generated organoids from primary colorectal cancer cells cultured through the conditional reprogramming technique, establishing a framework to perform short-term drug testing studies on patient-derived cells. To model interactions with stromal cells in the tumor microenvironment, we combined cancer cell organoids with carcinoma-associated fibroblasts, a cell type implicated in disease progression and drug resistance. Our organotypic models revealed that carcinoma-associated fibroblasts promote cancer cell proliferation and stemness primarily through hepatocyte growth factor–MET paracrine signaling and activation of cyclin-dependent kinases. Disrupting these tumor–stromal interactions reduced organoid size while limiting oncogenic signals and cancer stemness. Leveraging this tumor model, we identified effective drug combinations targeting colorectal cancer cells and their tumorigenic activities. Our study highlights a path to incorporate patient-derived cells and tumor–stromal interactions into a drug testing workflow that could identify effective therapies for individual patients. 
    more » « less
    Free, publicly-accessible full text available April 14, 2026
  3. Abstract Neonatal respiratory distress syndrome is mainly treated with the intratracheal delivery of pulmonary surfactants. The success of the therapy depends on the uniformity of distribution and efficiency of delivery of the instilled surfactant solution to the respiratory zone of the lungs. Direct imaging of the surfactant distribution and quantifying the efficiency of delivery is not feasible in neonates. To address this major limitation, we designed an eight-generation computational model of neonate lung airway tree using morphometric and geometric data of human lungs and fabricated it using additive manufacturing. Using this model, we performed systematic studies of delivery of a clinical surfactant either at a single aliquot or at two aliquots under different orientations of the airway tree in the gravitational space to mimic rolling a neonate on their side during the procedure. Our study offers novel insights into effects of the orientation of the lung airways and presence of a pre-existing surfactant film on how the instilled surfactant solution distributes in airways. 
    more » « less
  4. Abstract The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple-negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor–stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAF) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor–stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit prometastatic functions of TNBC cells. Our study also showed that HGF from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor–stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target. 
    more » « less
  5. Tumor microenvironment is a complex niche consisting of cancer cells and stromal cells in a network of extracellular matrix proteins and various soluble factors. Dynamic interactions among cellular and non-cellular components of the tumor microenvironment regulate tumor initiation and progression. Fibroblasts are the most abundant stromal cell type and dynamically interact with cancer cells both in primary tumors and in metastases. Cancer cells activate resident fibroblasts to produce and secrete soluble signaling molecules that support proliferation, migration, matrix invasion, and drug resistance of cancer cell and tumor angiogenesis. In recent years, various forms of three-dimensional tumor models have been developed to study tumor–stromal interactions and to identify anti-cancer drugs that block these interactions. There is currently a technological gap in development of tumor models that are physiologically relevant, scalable, and allow convenient, on-demand addition of desired components of the tumor microenvironment. In this review, we discuss three studies from our group that focus on developing bioengineered models to study tumor-stromal signaling. We will present these studies chronologically and based on their increasing complexity. We will discuss the validation of the models using a CXCL12-CXCR4 chemokine-receptor signaling present among activated fibroblasts and breast cancer cells in solid tumors, highlight the advantages and shortcomings of the models, and conclude with our perspectives on their applications. Impact statement Tumor stroma plays an important role in progression of cancers to a fatal metastatic disease. Modern treatment strategies are considering targeting tumor stroma to improve outcomes for cancer patients. A current challenge to develop stroma-targeting therapeutics is the lack of preclinical physiologic tumor models. Animal models widely used in cancer research lack human stroma and are not amenable to screening of chemical compounds for cancer drug discovery. In this review, we outline in vitro three-dimensional tumor models that we have developed to study the interactions among cancer cells and stromal cells. We describe development of the tumor models in a modular fashion, from a spheroid model to a sophisticated organotypic model, and discuss the importance of using correct physiologic models to recapitulate tumor-stromal signaling. These biomimetic tumor models will facilitate understanding of tumor-stromal signaling biology and provide a scalable approach for testing and discovery of cancer drugs. 
    more » « less
  6. Abstract Fibroblasts are an abundant cell type in tumor microenvironments. Activated fibroblasts, known as carcinoma‐associated fibroblasts (CAFs), interact with cancer cells through biochemical signaling and render cancer cells proliferative, invasive, and resistant to therapeutics. Targeting CAFs–cancer cells interactions offers a strategy to block cancer progression. 2D and 3D co‐cultures of human mammary fibroblasts and triple negative breast cancer (TNBC) cells are used to investigate the impact of heterotypic cellular interactions on the proliferation of matrix invasion of TNBC cells. The results show that fibroblasts secreting a chemokine, CXCL12, significantly enhance proliferation of TNBC cells expressing the chemokine receptor, CXCR4. Disrupting this interaction with a receptor antagonist normalizes cancer cell proliferation to that of a co‐culture model lacking this signaling. When co‐culture spheroids are embedded in collagen, fibroblasts producing CXCL12 promote collagen invasion of TNBC cells. Although co‐cultures containing normal fibroblasts also lead to TNBC cell spreading into the matrix, a morphological analysis of cells and inhibition of chemokine‐receptor signaling shows that this spreading is due to the incompatibility of fibroblasts and cancer cells leading to the segregation of the two cell types from the spheroid. 
    more » « less